DIVISION 03 – CONCRETE

03 00 00 CONCRETE
03 01 00 Maintenance of Concrete

03 01 10 Maintenance of Concrete Forming and Accessories
03 01 20 Maintenance of Concrete Reinforcing
03 01 23 Maintenance of Stressing Tendons
03 01 30 Maintenance of Cast-in-Place Concrete
 03 01 30.51 Cleaning of Cast-in-Place Concrete
 03 01 30.61 Resurfacing of Cast-in-Place Concrete
 03 01 30.71 Rehabilitation of Cast-in-Place Concrete
 03 01 30.72 Strengthening of Cast-in-Place Concrete
03 01 40 Maintenance of Precast Concrete
 03 01 40.51 Cleaning of Precast Concrete
 03 01 40.61 Resurfacing of Precast Concrete
 03 01 40.71 Rehabilitation of Precast Concrete
 03 01 40.72 Strengthening of Precast Concrete
03 01 50 Maintenance of Cast Decks and Underlayment
 03 01 50.51 Cleaning Cast Decks and Underlayment
 03 01 50.61 Resurfacing of Cast Decks and Underlayment
 03 01 50.71 Rehabilitation of Cast Decks and Underlayment
03 01 60 Maintenance of Grouting
03 01 70 Maintenance of Mass Concrete
03 01 80 Maintenance of Concrete Cutting and Boring

03 05 00 Common Work Results for Concrete

03 06 00 Schedules for Concrete
03 06 10 Schedules for Concrete Forming and Accessories
03 06 20 Schedules for Concrete Reinforcing
 03 06 20.13 Concrete Beam Reinforcing Schedule
 03 06 20.16 Concrete Slab Reinforcing Schedule
03 06 30 Schedules for Cast-in-Place Concrete
 03 06 30.13 Concrete Footing Schedule
 03 06 30.16 Concrete Column Schedule
 03 06 30.19 Concrete Slab Schedule
 03 06 30.23 Concrete Shaft Schedule
 03 06 30.26 Concrete Beam Schedule
03 06 40 Schedules for Precast Concrete
03 06 40.13 Precast concrete Panel Schedule
03 06 50 Schedules for Cast Decks and Underlayment
03 06 60 Schedules for Grouting
03 06 70 Schedules for Mass Concrete
03 06 80 Schedules for Concrete Cutting and Boring

03 08 00 Commissioning of Concrete
03 10 00 CONCRETE FORMING AND ACCESSORIES

03 11 00 Concrete Forming
 03 11 13 Structural Cast-in-Place Concrete Forming
 03 11 13.13 Concrete Slip Forming
 03 11 13.16 Concrete Shoring
 03 11 13.19 Falsework
 03 11 16 Architectural Cast-in-Place Concrete Forming
 03 11 16.13 Concrete Form Liners
 03 11 19 Insulating Concrete Forming
 03 11 23 Permanent Stair Forming

03 15 00 Concrete Accessories
 03 15 13 Waterstops

03 20 00 CONCRETE REINFORCING
 03 21 00 Reinforcing Steel
 03 21 13 Galvanized Reinforcing Steel
 03 21 16 Epoxy-Coated Reinforcing Steel

03 22 00 Welded Wire Fabric Reinforcing
 03 22 13 Galvanized Welded Wire Fabric Reinforcing
 03 22 16 Epoxy-Coated Welded Wire Fabric Reinforcing

03 23 00 Stressing Tendons

03 24 00 Fibrous Reinforcing

03 30 00 CAST-IN-PLACE CONCRETE
 03 30 53 Miscellaneous Cast-In-Place Concrete
CONSULTANT DESIGN GUIDELINE

Special care should be taken by the design team to provide concrete mix designs appropriate to the strength and finish requirements needed.

Special emphasis should be given when specifying mix requirements for flatwork exposed to ambient outside weather conditions. Northwest Arkansas aggregate sources can have a high content of chert which has a deleterious effect on concrete surfaces over time.

INCLUDE IN CONSTRUCTION DOCUMENTS

Stamp “S” in edge of concrete curb or concrete walk to indicate location of sleeve location.

EXECUTION

Placing Concrete: Contact the Facilities Management Construction Coordinator a minimum of 24 hours prior to any concrete placement. It is not the intent of the University to delay the Contractor. With proper University notification, the Contractor can, without University inspection, place concrete at the previously designated time.

VIBRATION: Use vibration for all concrete placements except concrete slabs on grade to prevent voids and air pockets and to ensure concrete is in proper contact with steel reinforcement.

END SECTION
SECTION 03 35 13
HIGH TOLERANCE CONCRETE FLOOR FINISHING

CONSULTANT DESIGN GUIDELINE

Mechanical Room Floor Finish. Specify all mechanical and electrical equipment rooms to have a smooth trowel concrete floor coated with a surface hardener.

INCLUDE IN CONTRACT DOCUMENTS

BLANK

EXECUTION

BLANK

END SECTION
SECTION 03 35 19
COLORED CONCRETE FINISHING

CONSULTANT DESIGN GUIDELINES

INCLUDE IN CONSTRUCTION DOCUMENTS

BLANK

EXECUTION

BLANK

END SECTION

03 35 23 Exposed Aggregate Concrete Finishing
03 35 26 Grooved Concrete Surface Finishing
03 35 29 Tooled Concrete Finish

03 37 00 Specialty Placed Concrete

Senior Walk Construction – As mentioned earlier, chert and other absorbent aggregates can have a deleterious effect on the surface of exterior concrete, particularly flatwork. When a contractor is asked to construct a senior walk sidewalk, the university intends to engrave the concrete surface at a later date, with names or other effects. Surface blemishes must be minimized. The intent of the monumental concrete specification is to provide adequate hardness for the engraving process to provide crisp, clean engravings and to provide a surface that is very durable over time, free from “pop-outs” and other defects. (See Appendix A – UofA Planning Group Sr Walk Dwg’s, you can also contact the planning group if you have more questions).

Other specialty placed concrete – There may be occasions where concrete flatwork is desired to have a durable surface, free from future defects, but where we do not intend to engrave the surface. In these cases the sample specification below may be modified to reduce the ultimate strength. However, we should not reduce below 3500 psi.

MONUMENTAL CONCRETE

PART 1 - GENERAL

1.1 **WORK INCLUDED**

A. Formwork, complete with required shoring, bracing and anchorage.
B. Control joints and expansion joints.
C. Concrete joints and expansion joints.
D. Cast-in-place concrete.
E. Work associated to Senior Walks.

1.2 RELATED WORK
A. Section 01 45 29 – Testing Laboratory Services.

1.3 SUBMITTALS
A. Concrete mix design and strength test results for each specified strength.

1.4 QUALITY ASSURANCE
A. Perform cast-in-place concrete work in accordance with ACI 301, unless specified otherwise in this Project Manual.
B. Keep copy of ACI 301-99 in field office for duration of project.

1.5 TESTING AGENCY
A. Field testing of the concrete mix will be performed by an independent testing laboratory in accordance with Sections 01 45 29. The testing agency will be 3rd party and not the responsibility of the contractor to pay for. However, the contractor shall notify the testing agency giving adequate time for inspection and testing.
B. Provide free access to work and cooperate with the appointed laboratory.
C. Tests of cement and aggregates may be performed to ensure conformance with requirements state herein.

1.6 REFERENCE STANDARDS
A. ACI-301-99, Specifications for Structural Concrete.
B. ACI Manual of Concrete Practice, Parts 1, 2, and 3.

1.7 ENVIRONMENTAL REQUIREMENTS
A. Allowable Concrete Mix Temperatures: ACI 301-99 Section 4.2.2.7.
 1. Cold Weather: Minimum 35 degrees F.
 2. Hot Weather: Maximum 95 degrees F.
B. Do not place concrete during rain, sleet, or snow unless protection is provided.
C. Keep accurate thermometer in area where work is proceeding.

PART 2 - PRODUCTS

2.1 CEMENT (ACI 301-99 Section 4.2).
 A. Portland Cement: ASTM C150, Type 1.
 B. Use one brand and type of cement throughout project unless otherwise specified.

2.2 ADMIXTURES (ACI 301-99 Section 4.2)
 A. Add air-entraining agent as indicated in ACI 301-99 Section 4.2.1.4.
 B. Use of accelerating admixtures such as salts, chemicals, or other foreign materials in cold weather will not be allowed. Use no other admixtures without prior approval of the Architect/Engineer.
 C. Use of set – retarding admixtures during hot weather will not be allowed.
 D. Limited use of Class F fly ash may be allowed with approval from owner.

2.3 STRENGTH (ACI 301-99 Section 1.7.4)
 A. Provide concrete of following strength: Compressive strength (28 day): 5,500 psi, except where noted otherwise in the Contract Documents

2.4 AIR ENTRAINMENT (ACI 301-99 Section 4.2.1.4)
 A. Add air-entraining agent to concrete mix for concrete work exposed to exterior.

2.5 SLUMP (ACI 301-99 Section 4.2.2.2)
 A. Contractor shall provide slump cone and test slump for each load of concrete.
 B. Minimum, slump for all concrete work: 3 inches.
 C. Slump for consolidation by vibration: 4 inches maximum.
 D. Slump for slabs and consolidation other than by vibration: 5 inches maximum.
2.6 PROPORTIONS

A. Selection of proportions for normal weight concrete: Method 1, Method 2, or Method 3, Contractor’s Option.

B. Fine aggregate shall conform to the requirements of ASTM Specification C-33, latest edition, and shall consist of clean, fresh water sand graded uniformly to conform to Paragraph 4 of the above referenced Specification C-33.

C. Coarse aggregate shall conform to the requirements of ASTM Specification C-33, latest edition, using standard grading size 1 -1/2” to No. 4 of washed gravel or crushed stone meeting requirements above and soundness requirements of ASTM C-33 modified to include item E below.

D. Water: Clean and free of injurious amounts of oil, acids, alkalis, organic materials, or other deleterious substances.

E. No aggregate that will adversely affect the surface of the concrete shall be allowed. Examples include chert or any aggregate that is water absorbent or chemically reactive may be included within the mix.

2.7 REINFORCING STEEL (ACI 301-99 Section 3)

A. Reinforcing Steel: 60 ksi yield grade; deformed billet steel bars, ASTM A615; plain finish.

B. Welded Steel Wire Fabric: plain type, ASTM A 185; in coiled rolls, plain finish, 6x6-W1.4 x W1.4 or 6x6 – W2.9 X W2.9 as shown on the Drawings.

2.8 ACCESSORIES

A. Premolded expansion joint fillers: ASTM D1751, ½ inch thick. Refer to ACI 301-99 Section 10.2.5.

2.9 CONCRETE MIX

A. Mix concrete in accordance with ASTM C94.

B. Mix concrete until there is a uniform distribution of the materials and the mass is homogeneous in consistency and colors. Continue mixing for at least 1 -1/2 minutes after all the ingredients are in the mixer.

PART 3 - EXECUTION

3.1 GENERAL

A. Notify Architect/Engineer at least 24 hours before the planned time to pour concrete.
B. Inspection:

1. Ensure that excavation and formwork are completed and within the allowed tolerances.
2. Ensure that ice and excess water are removed, no frost is present, and that ground is not frozen.
3. Check that reinforcement is secured in place.
4. Verify that insulation, anchors, and other embedded items are secured in position.

C. Install concrete work in accordance with ACI 301-99 except as amended by this section.

3.2 FORMWORK (ACI 301-99 Section 2)

A. Obtain Architect/Engineer’s review for use of earth forms. When using earth forms, hand-trim sides and bottoms, and remove loose dirt prior to placing concrete.

B. Tolerances for Formed Services: (Comply with ACI 301-99 Section 2)

3.3 FORM SURFACES PREPARATION (ACI 301-99 Section 2)

A. Apply form release agent on formwork in accordance with manufacturer’s recommendations. Apply prior to placing reinforcing steel, anchoring devices and embedded parts. Do not apply form release agent where concrete surfaces will receive special finishes or applied coverings which are affected by agent.

3.4 FINISHING FORMED SURFACES

A. Formed Surfaces Finishes: Provide rough form finish (ACI 301-99 Section 2) at all surfaces not exposed to view. Provide smooth rubbed finished (ACI 301-99 Section 2) at all surfaces exposed to view.

3.5 REMOVAL OF FORMS (ACI 301-99 Section 2)

A. Do not remove forms, shores, and bracing until concrete has gained sufficient strength to carry its own weight, construction loads, and design loads which are liable to be imposed upon it. Verify strength of concrete by compressive test results.

3.6 PLACING REINFORCING

A. Reinforcing shall be unpainted and uncoated, free from rust or scale and shall be cleaned and straightened before being shaped and in position.

B. Position reinforcing accurately and tie securely.
C. Support foot reinforcing on support chairs or concrete grout at maximum 3 feet on center each way to insure proper depth from bottom.

D. Wire dowels to longitudinal bars and place top bars in perfect alignment by the use of wood templates placed 2 inches from the top of the form.

E. Support wire mesh on support chairs, or other approved means, at no greater than three feet on center way to hold reinforcing in the center of the slab or as shown on the drawings.
 1. Do not depend on lifting mesh as concrete is being poured.
 2. Lap sides and ends not less than one wire spacing in slabs on grade and not less than 12 inches in structural slabs.

F. Provide 3 inches of concrete between reinforcing and the ground, unless detailed otherwise, where concrete is poured against the ground.

G. If, after the removal of forms, concrete surfaces are to be in contact with the ground or exposed to the weather:
 1. Bars larger than No.5: Protect with 2 inches of concrete.
 2. No. 5 bars and smaller: Protect with 1 1/2 inches of concrete.

H. Concrete covering for any reinforcing at surfaces not exposed directly to the ground or weather: Protect with 1 -1/2 inches of concrete.

3.7 PLACING CONCRETE

A. Convey concrete from mixer to final position by method which will prevent separation or loss of material.

B. Maximum height of concrete free fall; 60 inches.

C. Regulate rate of placement so concrete remains plastic and flows into position.

D. Deposit concrete in continuous operation until panel or section is completed.

E. Do not use concrete that has set and do not re-temper or use concrete that has been mixed for more than 1½ hours.

3.8 CONSOLIDATING CONCRETE:

A. Use mechanical vibrating equipment for consolidation.

B. Vertically insert and remove hand-held vibrators at points 18 inches to 30 inches apart, inserting to within 6 inches of bottom of freshly poured concrete.
C. Do not use vibrators to transport concrete forms.
D. Minimum vibrators frequencies: 6000 impulses per minute.
E. Vibrate concrete minimum amount required for consolidation.
F. Keep spare vibrator on hand during concrete placing operation.
G. Make sure the concrete is thoroughly worked around the reinforcing, the embedded items, and into corners of forms.

3.9 SLABS (ACI 301-99 Section 5)
A. Finish concrete slab surfaces in accordance with ACI 301-99 Section 5:
 1. Uniformly spread, screed, and float slabs. Do not use grate tampers or mesh rollers. Do not spread concrete by vibration.
 2. Senior Sidewalks that are intended to have engravings or other treatments shall be finished totally smooth. No brooming or other surface finishes are desired.
B. Sidewalks: Finish other than senior sidewalks in accordance with Section 32 13 76.

3.10 CURING
A. Cure Slabs: Use damp method as per ACI 301-99 Section 5.
B. Cure Walls above Grade: Use moisture-retaining covering as approved by Architect/Engineer in accordance with ACI 308.

3.11 WELDING (ACI 301-99 Section 3)
A. Welding Reinforcing Steel: Not allowed.

3.12 CONSTRUCTION JOINTS
A. Install construction joints in accordance with ACI 301-99 Section 5
B. Place expansion at 30 feet intervals and contraction joints at 15 feet (maximum) intervals. Where possible, make joints coincide with joints in adjacent concrete.
C. Fit joints with filler of required profiles. Recess ¼ inch below finished concrete surface.
3.13 INSERTS, EMBEDDED PARTS AND OPENINGS

A. Provide formed openings where required for pipes, conduits, sleeves and other work to be embedded in and passing through concrete members.

B. Coordinate work of other sections and cooperate with trade involved in forming and setting openings, slots, recesses, chases, sleeves, bolts, anchors, and other inserts. Any sleeve or object that extends above the horizontal surface of the concrete shall have the concrete shaped around the object in such a way as to not hold any water. Surface finishing, fillers, covers, etc. shall be installed with a slight conical shape as to avoid any water collection or water holding.

3.14 REPAIR OF SURFACE DEFECTS (ACI 301-99 Section 5.3.7)

A. Allow Architect/Engineer to inspect concrete surfaces immediately upon removal of forms.

B. Modify or replace concrete not conforming to required lines, detail, and elevation.

C. Repair or replace concrete not properly placed resulting in excessive honeycombing and other defects. Do not patch, repair, or replace exposed architectural concrete except upon express direction of Architect/Engineer.

3.15 FIELD QUALITY CONTROL

A. Four (4) concrete test cylinders will be taken by the testing laboratory for every 40 cu. yds., or fraction thereof, of concrete placed. Not less than one (1) set of test cylinders shall be taken for each day’s pour.

B. One (1) additional test cylinder will be taken during cold weather concreting and be cured on job site under same conditions as concrete it represents.

C. One (1) slump test will be taken by the testing laboratory for each set of test cylinders taken and for each separate batch of concrete placed.

D. Compression test cylinders: Test cylinders shall be cast on the project site by a representative of the testing laboratory.

1. Make cylinders according to ASTM C31.

2. Make additional sets of test cylinders for curing under job conditions:
 a. When it is needed to determine when to remove forms.
 b. When to put a structure into service.
 c. When temperature extremes are expected during the curing test period.

4. Properly marked prepared test cylinders and fill out the card supplied by the testing laboratory with instructions on when to make test breaks and where to send the test results.
5. Transport in a protected condition, each set of prepared and marked test cylinders to the designated testing laboratory for curing and testing as soon as the cylinders can be transported without damage.

 1. Cure cylinders in laboratory until time for testing.
 2. Test each set of cylinders at 7 days and 28 days after pouring.
 3. Tabulation of breakage schedule and action:

<table>
<thead>
<tr>
<th>Specified strength of 5,500 psi at 28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Break</td>
</tr>
<tr>
<td>7 day</td>
</tr>
<tr>
<td>Less than 4200 psi</td>
</tr>
<tr>
<td>Contractor notify A/E</td>
</tr>
<tr>
<td>Break 28 day cylinder</td>
</tr>
<tr>
<td>Over 6000 psi</td>
</tr>
<tr>
<td>Stop Testing</td>
</tr>
<tr>
<td>28 day</td>
</tr>
<tr>
<td>Less than 6000 psi</td>
</tr>
<tr>
<td>Contractor notify Architect, investigate reason for low break and report in writing to AE.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

4. For testing cylinders for specified compressive strength other than 6,000 psi, see the Architect/Engineer.

F. In Case of Low Compression Test Results:
 1. Architect/Engineer will have right to order change in the mix design, costs to be borne by the contractor.
 2. Architect/Engineer will have right to order core tests of the concrete in accordance with SCI C42, or load tests of the structure, the cost to be borne by the Contractor for either test.

3.16 PROTECTION OF COMPLETED WORK

A. During curing period, protect the concrete from damaging mechanical disturbances, water flow, loading, shock, and vibration.

END OF SECTION
03 37 23 Roller-Compacted Concrete
03 37 26 Underwater Placed Concrete

03 38 00 Post-Tensioned Concrete
03 38 13 Post-Tensioned Concrete Prep
03 38 16 Unbonded Post-Tensioned Concrete

CONSULTANT DESIGN GUIDELINES

INCLUDE IN CONSTRUCTION DOCUMENTS

Post-Tensioning Supplier Prequalification Requirements

A. Supplier shall have successfully provided all materials for at least 5 post-tensioning installations with structural system similar to Project in previous 5 years.
B. Provide post-tensioning strand systems produced in PTI-certified plant conforming to all material and installation requirements of ACI 301, ACI 318, ACI 423.6 and approved by International Conference of Building Officials (Uniform Building Code).

Post-Tensioning Installer Prequalification Requirements

A. Installer shall be accepted in writing by post-tensioning Supplier.
B. Installer shall have successfully performed at least 5 previous post-tensioning installations per heading “Post-Tensioning Supplier Prequalification”.

Warranty

A. Warranty shall be 5 years, beginning at the date of Beneficial Occupancy.

END SECTION

03 38 19 Bonded Post-Tensioned Concrete

03 39 00 Concrete Curing
03 39 13 Water Concrete Curing
03 39 16 Sand Concrete Curing
03 39 23 Membrane Concrete Curing
 03 39 23.13 Chemical Compound Membrane Concrete Curing
 03 39 23.23 Sheet Membrane Concrete Curing

03 40 00 PRECAST CONCRETE
03 41 00 Precast Structural Concrete
03 41 13 Precast Concrete Hollow Core Planks
03 41 16 Precast Concrete Slabs
03 41 23 Precast Concrete Stairs
03 41 33 Precast Structural Pretensioned Concrete
03 41 36 Precast Structural Post-Tensioned Concrete
03 45 00 Precast Architectural Concrete
03 45 13 Faced Architectural Precast Concrete
03 45 33 Precast Architectural Pretensioned Concrete
03 45 36 Precast Architectural Post-Tensioned Concrete

03 47 00 Site-Cast Concrete
03 47 13 Tilt-Up Concrete
03 47 16 Lift-Slab Concrete

03 48 00 Precast Concrete Specialties
03 48 13 Precast Concrete Bollards
03 48 16 Precast Concrete Splash Blocks
03 48 19 Precast Concrete Stair Treads
03 48 43 Precast Concrete Trim

03 49 00 Glass-Fiber-Reinforced Concrete
03 49 13 Glass-Fiber-Reinforced Concrete Column Covers
03 49 16 Glass-Fiber-Reinforced Concrete Spandrels
03 49 43 Glass-Fiber-Reinforced Concrete Trim

03 50 00 CAST DECKS AND UNDERLAMENT
03 51 00 Cast Roof Decks
03 51 13 Cementitious Wood Fiber Decks
03 51 16 Gypsum Concrete Roof Decks

03 52 00 Lightweight Concrete Roof Insulation
03 52 13 Composite Concrete Roof Insulation
03 52 16 Lightweight Insulating Concrete
 03 52 16.13 Lightweight Cellular Insulating Concrete
 03 52 16.16 Lightweight Aggregate Insulating Concrete

03 53 00 Concrete Topping
03 53 13 Emery-Aggregate Concrete Topping
03 53 16 Iron-Aggregate Concrete Topping

03 54 00 Cast Underlayment
03 54 13 Gypsum Cement Underlayment
03 54 16 Hydraulic Cement Underlayment

03 60 00 GROUTING
03 61 00 Cementitious Grouting
03 61 13 Dry-Pack Grouting
03 62 00 Non-Shrink Grouting
03 62 13 Non-Metallic Non-Shrink Grouting
03 62 16 Metallic Non-Shrink Grouting

03 63 00 Epoxy Grouting
03 64 00 Injection Grouting
03 64 23 Epoxy Injection Grouting

03 70 00 MASS CONCRETE
03 71 00 Mass Concrete for Raft Foundations
03 72 00 Mass Concrete for Dams

03 80 00 CONCRETE CUTTING AND BORING
03 81 00 Concrete Cutting
03 81 13 Flat Concrete Sawing
03 81 16 Track Mounted Concrete Wall Sawing
03 81 19 Wire Concrete Wall Sawing
03 81 23 Hand Concrete Wall Sawing
03 81 26 Chain Concrete Wall Sawing

03 82 00 Concrete Boring
03 82 13 Concrete Core Drilling
1. concrete to be 5500 psi
2. reinforcing to consist of #4 bar at 2'-0" o.c. each way, 2" from bottom of slab
3. concrete mix to have maximum 3/4" aggregate
4. compressive strength of concrete test cylinders to be taken by contractor at his expense on day of pour
5. walk to have a minimum curing time of 90 days prior to sandblasting
6. 4" dia. PVC schedule 40 sleeve at 30'-0" o.c.
7. saw-cut control joints at 15'-0" o.c. to be cut within 24 hrs. of pour
8. expansion joints at 30'-0" o.c.
9. walk surface to have slick trowel finish
10. contractor to "press" top 1/2" of wet concrete so that aggregate material is 1/2" below top of walk
11. "S" stamp to be embossed by contractor at all sleeve locations, each side

SENIOR WALK

construction detail - longitudinal section
1/2" depth hand-tooled score joint

6"

TOP VIEW

compacted subgrade @ 95% proctor density

6" concrete walk / 5500psi #4 rebar 2'-0" o.c. each way

6" gravel base compacted @ 105% proctor density

finish grade

7'-0"

SENIOR WALK
construction detail – cross section